New Algorithms for Distributed Submodular Maximization
نویسنده
چکیده
vi Chapter
منابع مشابه
Horizontally Scalable Submodular Maximization
A variety of large-scale machine learning problems can be cast as instances of constrained submodular maximization. Existing approaches for distributed submodular maximization have a critical drawback: The capacity – number of instances that can fit in memory – must grow with the data set size. In practice, while one can provision many machines, the capacity of each machine is limited by physic...
متن کاملDeterministic Algorithms for Submodular Maximization Problems
Randomization is a fundamental tool used in many theoretical and practical areas of computer science. We study here the role of randomization in the area of submodular function maximization. In this area most algorithms are randomized, and in almost all cases the approximation ratios obtained by current randomized algorithms are superior to the best results obtained by known deterministic algor...
متن کاملMirror-Descent-like Algorithms for Submodular Optimization
In this paper we develop a framework of submodular optimization algorithms in line with the mirror-descent style of algorithms for convex optimization. We use the fact that a submodular function has both a subdifferential and a superdifferential, which enables us to formulate algorithms for both submodular minimization and maximization. This reveals a unifying framework for a number of submodul...
متن کاملSubmodular Function Minimization and Maximization in Discrete Convex Analysis
This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...
متن کاملMixed Robust/Average Submodular Partitioning: Fast Algorithms, Guarantees, and Applications
We study two mixed robust/average-case submodular partitioning problems that we collectively call Submodular Partitioning. These problems generalize both purely robust instances of the problem (namely max-min submodular fair allocation (SFA) Golovin (2005) and min-max submodular load balancing (SLB) Svitkina and Fleischer (2008)) and also generalize average-case instances (that is the submodula...
متن کامل